

Introduction to Data Science & Visualizations in Learning Analytics

Jakub Kuzilek

Lecture schedule

- 2 parts (approx. 40 minutes each):
- 1. Introduction to Data Science in LA
- 2. OULAD dataset & template solution

In the middle we will have 5 minutes break.

At the end:

- Voting for the additional non-mandatory lecture on data analysis/manipulation using OULAD in R
- Group formation

Data Science in Education

Data Science in Learning Analytics

Data Science is discipline that allows you to turn raw data into understanding, insight, and knowledge.

Grolemund, G., & Wickham, H. (2017). R for Data Science. O'Reilly Media.

DS in education is challenging

Making sense from data about teaching, learning and educational systems.

Data analysis + content knowledge

Tasks

- Building systems that get data to the right people
- Measuring impact on the student experience
- Searching for patterns in student data
- Using statistical models in education
- Studying the effects of educational support
- Advancing scientific knowledge about learning and learners

Common methods

- Prediction
- Clustering
- Behaviour modelling
- Recommendation
- Student grouping
- Social network analysis
- Text mining

Data Science process

Program

Tidy + Transform = Wrangle

Import

Data sources in education:

- Student record data
- Staff data
- Admissions & applications data
- Financial data
- Alumni data
- Course data
- Estates and facilities data
- Virtual Learning Environments
- Assessment data
- Forum data

Import

Data sources types:

- Files
 - CSV, XML, JSON
- Databases
 - SQL, NoSQL (key-value, graph-based, document-based,...)
- API (Social media,...)

Tidy

Tidy dataset:

- Each column represents one variable
- Each row represents one observation
- Each cell represent one value

Problems:

- Multiple data sources with different unique identifier
- Values in one column represents multiple variables
- One observation spreads in multiple rows

Transform

- Handle missing data
- Inconsistent data types
- Outliers
- Encoding
- Filtering the data
- Aggregation of the data
- Transforming values
- Handling texts and dates

Visualize

- Visualization is useful tool for providing the information to stakeholder but also during wrangling the data
- Helps to understand issues in the data
- Uncovers outliers
- Helps to identify relationships between variables

Datasaurus

Datasaurus

https://www.autodesk.com/research/publications/same-stats-different-graphs

Do not trust your data blindly

- Always check data visually.
- Statistics can be misleading.

Model

- Tidy data can be used for creating of model
- For that Machine Learning methods can be used

Machine Learning is:

"Field of study that gives computers the ability to learn without being explicitly programmed"

~ Arthur Samuel, 1959

- Machine Learning is subfield of Computer Science
- Objective: Generalize from experience

Model

ML task categories based on "feedback" available to learning system:

- Supervised learning
 - We know the right answers
 - Supervised learning algorithm is inferring decision function from labelled training data. The algorithm needs to generalize from training data to unseen data "reasonably".
- Unsupervised learning
 - We do not know right answers
 - Unsupervised learning algorithm is inferring function, which describes hidden structure of unlabelled data. We cannot estimate error of algorithm.
- Reinforcement Learning
 - Machine interacts with dynamic environment in which it needs to achieve certain goal without teacher telling it if it is close to the goal or not.

Model

ML categories based on "outputs" produced:

- Classification
- Regression
- Clustering
- Density estimation
- Dimensionality reduction

Visualisations

Gestalt Laws of Perceptual Organization

- Gestalt psychology how human mind organize and interpret visual data
- Humans have advanced perceptual abilities good at recognizing patterns
- Wolfgang Kohler & Kurt Koffka developed rules how human group small objects to form larger ones (perceptual organization) ~ Gestalt laws
- A set of principles for understanding some of the ways in which perception works.
- Sometimes lead to incorrect perceptions of the world
- Actually heuristics or shortcuts
- Heuristics are usually designed for speed not for accuracy

Gestalt Laws of Perceptual Organization

https://www.verywellmind.com/gestalt-laws-of-perceptual-organization-2795835

Pre-attentive characteristics

Set of visual properties are detected rapidly (< 250 ms) in multi-element display and accurately by low-level visual system

https://www.csc2.ncsu.edu/faculty/healey/PP/

Dashboards

Visualise + Communicate -> Dashboard

- Deliver information to stakeholder in interactive way
- Automation of the analysis
- Includes possibility for user to adjust some parameters

- Challenges:
 - Scalability
 - Data quality
 - User interface
 - Evaluation

- Issues:
 - Too much colour
 - Too much details
 - Useless decorations
 - Poor visualisations

Tips for creating useful visualizations

Tips: No 3D graphs

Tips: No pie charts

Pre-attentive characteristics does not help with showing exact quantitative diferences

Tips: Do not lie

Tips: Use common sense

Tips: Don't misled the users

The diminishing financial return of higher education

Costs of 4-yr degree vs. earnings of 4-yr degree

Source: Source: U.S. Census Data & NCES Table 345.

Notes: All figures have been adjusted to 2010 dollars using the Consumer Price Index from the BLS.

How to start

- 1. Know your data and audience
- 2. Formulate questions about you data
- 3. Apply visual mapping

"Simplicity is the ultimate sophistication" ~ Leonardo da Vinci

References

- Wagemans J, Elder JH, Kubovy M, et al. <u>A century of Gestalt psychology in</u> visual perception: <u>I. Perceptual grouping and figure-ground</u> organization. *Psychol Bull*. 2012;138(6):1172–1217. doi:10.1037/a0029333
- Vezzani, S, Marino, BF, Giora, E. <u>An early history of the Gestalt factors of organization</u>. *Perception*. 2012;41(2):148-67. doi:10.1068/p7122
- Dresp-Langley B. <u>Principles of perceptual grouping: Implications for image-</u> <u>guided surgery</u>. *Front Psychol*. 2015;6:1565. doi:10.3389/fpsyg.2015.01565
- Ali N, Peebles D. <u>The effect of Gestalt laws of perceptual organization on the</u> <u>comprehension of three-variable bar and line graphs</u>. *Hum Factors*. 2013;55(1):183-203. doi:10.1177/0018720812452592

5 minutes break

Introduction to OULAD data

OUALAD Learning Analytics Dataset

https://www.nature.com/articles/sdata2017171

About Open University

- One of the largest distance based learning universities worldwide
- Approx. 180,000 students
- Teaching delivered remotely via Moodle-like system
- During the degree students participate in several courses (modules)
- 1 module ~ 60 credits
- Wide variety of units/departments exists to support students

About courses

- Each academic year has two semesters winter (J) and summer (B)
- Typical semester last approximately ³/₄ of the year
- Students interacts with the Virtual Learning Environment, which contains all the learning resources, assessments and tools for contacting their teachers and peers
- Course-presentation covers multiple topics, each usually ends with the assessment => assessments can be considered as milestones in coursepresentation

Dataset info

Module	Domain	Presentations	Students
AAA	Social Sciences	2	748
BBB	Social Sciences	4	7,909
ссс	STEM	2	4,434
DDD	STEM	4	6,272
EEE	STEM	3	2,934
FFF	STEM	4	7,762
GGG	Social Sciences	3	2,534

OULAD structure

OULAD structure

student_info

- **code_module** module identification code on which the student is registered.
- **code_presentation** presentation identification code during which the student is registered on the module.
- *id_student* the unique student identification number.
- gender student's gender.
- *region* the geographic region, where the student lived while taking the module-presentation.
- *highest_education* the highest student education level on entry to the module presentation.
- *imd_band* the IMD band of the place where the student lived during the module-presentation.
- *age_band* a band of student's age.
- num_of_prev_attempts the number of how many times the student has attempted this module.
- studied_credits the total number of credits for the modules the student is currently studying.
- *disability* indicates whether the student has declared a disability.
- *final_result* student's final result in the module-presentation.

assessments

- code_module module identification code, to which the assessment belongs.
- code_presentation presentation identification code, to which the assessment belongs.
- *id_assessment* assessment identification number.
- assessment_type a type of assessment. Three types of assessments exist—Tutor Marked Assessment (TMA), Computer Marked Assessment (CMA) and Final Exam (Exam).
- *date* information about the cut-off day of the assessment.
- weight the weight of the assessment. Typically, Exams are treated separately and have the weight equal to 100%; the sum of all other assessments is also 100%.

student_assesment

- *id_assessment* the assessment identification number.
- *id_student* the unique student identification number.
- *date_submitted* the day of assessment submission.
- *is_banked* the status flag indicating that the assessment result has been transferred from a previous presentation.
- score the student's score in this assessment. The range is from 0 to 100. The score lower than 40 is interpreted as Fail. The marks are in the range from 0 to 100.

courses

- code_module code name of the module, which serves as the identifier.
- **code_presentation** code name of the presentation.
- *length* the length of the module-presentation in days from module start date to module end date.

student_registration

- **code_module** the module identification code.
- **code_presentation** the presentation identification code.
- *id_student* the unique student identification number.
- *date_registration* the day of student's registration for the module presentation.
- date_unregistration the day of student unregistration from the module presentation. Students, who completed the course have this field empty. Students who unregistered have Withdrawal as the value of the final_result in the studentInfo table.

vle

- *id_site* the identification number of the material.
- **code_module** the identification code for the module.
- **code_presentation** the identification code of the presentation.
- *activity_type* the role associated with the module material.
- *week_from* the week from which the material is planned to be used.
- *week_to* the week until which the material is planned to be used.

student_vle

- **code_module** the module identification code.
- **code_presentation** the presentation identification code.
- *id_student* the unique student identification number.
- *id_site* the VLE material identification number.
- *date -* the day of student's interaction with the material.
- *sum_click* the number of times the student interacted with the material.

E-R diagram

Template solution

Gitlab project

- 1. Fork project from: https://gitlab.informatik.hu-berlin.de/kuzilekj/la-dashboards-course
- 2. Add kuzilekj as maintainer to your project
- 3. Do the development
- 4. After final presentation create merge request

Docker

- 1. Install Docker desktop (<u>https://www.docker.com/get-started</u>)
- 2. Checkout the git project to your local machine
- 3. Run: docker compose up

Required versions:

- Docker Engine 20.10.7 or higher
- Docker Compose 1.29.2 or higher

Voting & Group formation